Inhibiting Extracellular Vesicle Release from Human Cardiosphere Derived Cells with Lentiviral Knockdown of nSMase2 Differentially Effects Proliferation and Apoptosis in Cardiomyocytes, Fibroblasts and Endothelial Cells In Vitro

نویسندگان

  • Jennifer K Lang
  • Rebeccah F Young
  • Hashmat Ashraf
  • John M Canty
چکیده

Numerous studies have shown a beneficial effect of cardiosphere-derived cell (CDC) therapy on regeneration of injured myocardium. Paracrine signaling by CDC secreted exosomes may contribute to improved cardiac function. However, it has not yet been demonstrated by a genetic approach that exosome release contributes to the therapeutic effect of transplanted CDCs. By employing a lentiviral knockdown (KD) strategy against neutral spingomyelinase 2 (nSMase2), a crucial gene in exosome secretion, we have defined the role of physiologically secreted human CDC-derived exosomes on cardiac fibroblast, endothelial cell and primary cardiomyocyte proliferation, cell death, migration and angiogenesis using a series of in vitro coculture assays. We found that secretion of hCDC-derived exosomes was effectively inhibited by nSMase2 lentiviral KD and shRNAi expression was stable and constitutive. hCDC exosome release contributed to the angiogenic and pro-migratory effects of hCDCs on HUVECs, decreased proliferation of fibroblasts, and decreased apoptosis of cardiomyocytes. These in vitro reactions support a role for exosome secretion as a paracrine mechanism of stem cell-mediated cardiac repair in vivo. Importantly, we have established a novel tool to test constitutive inhibition of exosome secretion in stem cell populations in animal models of cardiac disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

Intramyocardial injection of heart-derived extracellular matrix combined with cardiosphere-derived cells improves myocardial structure and function in rats with acute myocardial infarction

This study aimed to investigate the cardioprotective effects of intramyocardial injection of heart derived extracellular matrix (ECM) and cardiosphere-derived cells (CDCs) in a rat model of myocardial infarction (MI). ECM and CDCs were collected from the rat heart, and the proliferation, apoptosis and morphology of CDCs maintained on ECM were characterized in vitro. MI model was established in ...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Cytotoxic and Anticancer Effects of ICD-85 (Venom Derived Peptides) in Human Breast Adenocarcinoma and Normal Human Dermal Fibroblasts

      ICD-85 (venom derived peptides) has anti-proliferative effect and anti-angiogenesis activity on cancer cells. This study was performed to test the effect of ICD-85, on Human breast adenocarcinoma (MCF-7) and normal Human Dermal Fibroblasts (HDF) cell lines. In this experimental study, Mitochondrial activity, Neutral red uptake, Lactate dehydrogenase (cell necrosis), and cell morphology we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016